Beste Grafikkarten GPUs: [[https://timdettmers.com/2019/04/03/which-gpu-for-deep-learning/]] Machine Learning Artificial Intelligence Machine Learning Maschine Learning Unterschiede Gehirn neuronales Netz https://www.golem.de/news/kuenstliche-intelligenz-wie-sich-deep-learning-vom-gehirn-unterscheidet-2202-162231-4.html {{::neuronla_networks.jpg?400|}} ====== Neuronale Netzwerke ====== Einführung Videos (engl.): [[https://www.3blue1brown.com/neural-networks]] Einführung (Kostenloses Buch, engl.): [[http://neuralnetworksanddeeplearning.com/]] * Parameter: Anzahl der Neuronen (Parameter: Bias/Addition) plus Anzahl der Verbindungen (Weight/Multiplikator) zwischen allen Neuronen * Aktivierungsfunktion: Funktion, welchen Wert das Neuron weitergibt. Oft ReLU (Rectified Linear Unit) =max(0, x) (nur positive Zahlen werden weitergegeben) ====== Fertig trainierte KI-Netzerke ====== ===== Grafik ===== Videos online erstellen kostenlos: https://pikalabsai.org/ ===== Text ===== [[https://www.golem.de/specials/gpt-3/|GPT-3]] : Nicht mehr frei seit 3 (am besten Trainiertes Netz, frei wäre angebl. zu gefährlich) Frei: [[https://www.eleuther.ai/projects/gpt-neo/|GPT-Neo]] [[https://www.eleuther.ai/projects/gpt-neox/| GPT-NeoX]] ====== Deep Learning ====== Crash course Google : https://developers.google.com/machine-learning/crash-course/ Machine Learning Software Links: [[http://deeplearning.net/software_links/]] ===== Torch ===== [[http://torch.ch/]] ===== OpenCV ===== ==== Beispiele ==== === Vorbeifahrende Autos zählen === Object tracking in video with OpenCV and Deep Learning ((https://youtu.be/19vaot75JCY)) Pattern: [[https://developer.ibm.com/patterns/detect-track-and-count-cars-in-a-video/]] Repo: [[https://github.com/IBM/powerai-counting-cars]] ===== Frameworks ===== ==== PyTorch ==== ==== TensorFlow ==== [[https://www.statworx.com/de/blog/data-science/einfuehrung-tensorflow/|Sehr gute Einführung Deutsch]] [[https://www.tensorflow.org/tutorials]] ==== Keras ==== Grundlagen: [[https://www.tensorflow.org/tutorials/keras/classification]] ==== DL4J ==== ==== Caffee ==== ==== Microsoft Recognition Toolkit ==== ===== YOLO ===== You only look once Quelle((https://www.youtube.com/watch?v=4eIBisqx9_g)) You Only Look Once - this object detection algorithm is currently the state of the art, outperforming R-CNN and it's variants. I'll go into some different object detection algorithm improvements over the years, then dive into YOLO theory and a programmatic implementation using Tensorflow! Code for this video: https://github.com/llSourcell/YOLO_Object_Detection More learning resources: https://pjreddie.com/darknet/yolo/ https://timebutt.github.io/static/how-to-train-yolov2-to-detect-custom-objects/ http://machinethink.net/blog/object-detection-with-yolo/ https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection https://github.com/KleinYuan/easy-yolo https://medium.com/@xslittlegrass/almost-real-time-vehicle-detection-using-yolo-da0f016b43de https://medium.com/diaryofawannapreneur/yolo-you-only-look-once-for-object-detection-explained-6f80ea7aaa1e