====== Google Coral ======
Aneleitung zum Installierern: [[https://coral.ai/docs/accelerator/get-started/#pycoral-on-linux]]
Punkt 2a) gibt bei mir (Ubuntu 22.x) einen Fehler bzgl. Abhängigkeiten. Python 3.10 zu NEU!
Lösung:
Quelle((https://igor.technology/installing-coral-usb-accelearator-python-3-10-ubuntu-22/))
sudo apt-get install python3-pycoral
Here is where you should get errors:
The following packages have unmet dependencies:
python3-pycoral : Depends: python3-tflite-runtime (= 2.5.0.post1) but it is not going to be installed
Depends: python3 (< 3.10) but 3.10.6-1~22.04 is to be installed
Instead using apt-get install download 2 wheel files from this repository:
[[https://github.com/hjonnala/snippets/tree/main/wheels/python3.10]]
and run:
pip install tflite_runtime-2.5.0.post1-cp310-cp310-linux_x86_64.whl
pip install pycoral-2.0.0-cp310-cp310-linux_x86_64.whl
===== Coral USB =====
Object detection and image classification with Google Coral USB Accelerator ((https://pyimagesearch.com/2019/05/13/object-detection-and-image-classification-with-google-coral-usb-accelerator/))
Video : https://coral.ai/docs/dev-board/camera/#view-with-a-streaming-server
Use Coral Edge TPUs to run TFlite models in Node with TensorFlow.js: [[https://codelabs.developers.google.com/tensorflowjs-coral-tflite-node#0]]
X-LINUX-AI - object detection using Coral Edge TPU TensorFlow Lite C++ API : [[https://wiki.stmicroelectronics.cn/stm32mpu/wiki/X-LINUX-AI_-_object_detection_using_Coral_Edge_TPU_TensorFlow_Lite_C%2B%2B_API]]
==== Beispiele ====
=== semantic_segmentation.py ===
Fehler in 'semantic_segmentation.py':
Zeile 131:
output_img.paste(mask_img, (width, 0))
muss heissen:
output_img.paste(mask_img, (new_width, 0))
Imagemagick -
Trimming with a Specific Color: [[https://legacy.imagemagick.org/Usage/crop/#trim_color]]
===== STM32MP1 =====
[[https://wiki.st.com/stm32mpu/wiki/How_to_compile_model_and_run_inference_on_Coral_Edge_TPU_using_STM32MP1]]
===== Models =====
[[https://helloworld.co.in/article/model-garden-testing-20-machine-learning-models-raspberry-pi]]
===== Projekte =====
Body segmentation https://blog.tensorflow.org/2019/11/updated-bodypix-2.html